T- Reich Mapping in Topological Vector Space-Valued Cone Metric Spaces

S. K. Malhotra
Dept. of Mathematics, Govt. S.G.S.P.G. College
Ganj Basoda, Vidisha (M.P.) India

S. Shukla
Dept. of Applied Mathematics, S.V.I.T.S
Sanwer Road, Indore (M.P.) India
satishmathematics@yahoo.co.in

R. Sen
Dept. of Applied Mathematics, S.V.I.T.S
Sanwer Road, Indore (M.P.) India
ravindra_sen13@yahoo.co.in

Abstract

The object of this paper is to establish some new fixed point results in topological vector space-valued cone metric spaces, by proving the fixed point theorems for T-Reich and T-Kannan contraction mappings in topological vector space-valued cone metric spaces.

Mathematics Subject Classification: 54H25, 47H10.

Keywords: TVS-Cone Metric Space, Fixed Point, Contraction Mapping.

1 Introduction

Huang and Zhang [5] generalized the notion of metric spaces replacing the set of real numbers by an ordered Banach space. Many authors proved fixed point theorems in cone metric spaces (see, e.g. [5, 6, 12]) under additional assumption about the underlying cone, such as normality or even regularity. Recently, Rezapour and Hambarani [11] omitted the assumption of normality in cone metric space, which is a milestone in developing fixed point theory in
cone metric space. In papers [1, 8] authors tried to generalize this approach by using cones in topological vector spaces (tvs) instead of Banach space. However, it should be noted that an old result [9] shows that if the underlying cone of an ordered tvs is solid and normal it must be an ordered normed space. So proper generalizations when passing from norm-valued cone metric space can be obtained only in the case of non normal cones. Recently Kadelburg et. al. [8] developed further theory of tvs-cone metric space and proved some fixed point results and common fixed point results in tvs-cone metric space. In this paper we prove some fixed point theorem for T-Reich type mappings and T-Kannan type contraction [6] in tvs-valued cone metric space.

2 Preliminary Notes

Definition 2.1. Let E be a real Hausdorff topological vector space (tvs for short) with the zero vector θ. A nonempty proper and closed subset P of E is called a (convex) cone if $P + P \subset P$, $\lambda P \subset P$ for $\lambda \geq 0$ and $P \cap \{-P\} = \{\theta\}$. We will always assume that P^0 is non empty (here P^0 denotes the interior of P), and such cones are called solid.

Each cone P includes a partial order “\leq” on E defined by $x \leq y \iff y - x \in P$. $x < y$ will stand for $x \leq y$ and $x \neq y$, while $x \ll y$ will stand for $y - x \in P^0$. The pair (E, P) is an ordered topological vector space.

Let P be a cone in a real Banach space E then P is called normal, if there exists a constant $K > 0$ such that for all $x, y \in E$ and $0 \leq x \leq y$ implies $\|x\| \leq K \|y\|$. The least positive number K satisfying the above inequality is called the normal constant of P.

Proposition 2.2. [8] Let P be a cone in a real tvs E. If for $a \in P$ and $a \leq ka$, for some $k \in [0, 1)$ then $a = \theta$.

Definition 2.3. Let X be a nonempty set and (E, P) an ordered tvs. A function $d : X \times X \to E$ is called tvs-cone metric and (X, d) is called tvs-cone metric space, if the following conditions hold:

(a) $\theta \leq d(x, y)$ for all $x, y \in X$, and $d(x, y) = \theta \iff x = y$,
(b) $d(x, y) = d(y, x)$ for all $x, y \in X$,
(c) $d(x, z) \leq d(x, y) + d(y, z)$ for all $x, y, z \in X$.

Let $x \in X$ and $\{x_n\}$ be a sequence in X. Then it is said the following:

(a) $\{x_n\}$ tvs-cone converges to x, if for every $c \in P^0$, there is a natural number n_0 such that $d(x_n, x) \ll c$, for all $n > n_0$. We denote it by $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ as $n \to \infty$.
(b) $\{x_n\}$ is a tvs-cone Cauchy sequence if for every $c \in P^0$ there is a natural
number n_0 such that $d(x_n, x_m) \ll c$ for all $n, m > n_0$.
(c) (X, d) is tvs-cone complete if every tvs-cone Cauchy sequence is tvs-cone convergent in X.

In further discussion we always assume that E is a real tvs and P is a cone in E, and “\leq” is partial ordering with respect to P.

Lemma 2.4. [8] (a) Let $\theta \leq x_n \to \theta$ in (E, P) and $\theta \ll c$. Then there is n_0 such that $x_n \ll c$ for every $n > n_0$.
(b) It can happened that $\theta \leq x_n \ll c$ for each $n > n_0$, but $x_n \to \theta$ in (E, P).
(c) It can happened that $x_n \to x, y_n \to y$ in the tvs-cone metric d, but that $d(x_n, y_n) \to d(x, y)$ in (E, P).
(d) $\theta \leq u \ll c$ for each $c \in P^0 \Rightarrow u = \theta$.
(e) $x_n \to x, x_n \to y$ (in the tvs-cone metric)$\Rightarrow x = y$.

Lemma 2.5. [8] (a) If $u \leq v$ and $v \ll w$, then $u \ll w$,
(b) If $u \ll v$ and $v \leq w$, then $u \ll w$,
(c) If $u \ll v$ and $v \ll w$, then $u \ll w$,
(d) Let $x \in X$, and $\{x_n\}$ and $\{b_n\}$ be two sequences in X and E respectively, $\theta \ll c$ and $\theta \leq d(x_n, x) \leq b_n$ for all n. If $b_n \to \theta$, then there is n_0 such that $d(x_n, x) \ll c$ for all $n > n_0$.

Definition 2.6. Let T and f are two self maps of a tvs-valued cone metric space X. Then (T, f) is called a Banach pair, if $fT x = T f x$ for every $x \in F(f)$, where $F(f)$ is the set of all fixed point of f.

In further discussion we write “0” in place of zero vector “θ” of E.

Definition 2.7. Let (X, d) be a tvs-cone metric space and $T, f : X \to X$ satisfy, $d(T f x, T f y) \leq ad(T x, T y) + bd(T x, T f x) + cd(T y, T f y)$ for all $x, y \in X$, where a, b, c are nonnegative constants such that $a+b+c < 1$. Then f is called T-Reich mapping.

3 Main Results

Theorem 3.1. Let (X, d) be a complete tvs-cone metric space and $T, f : X \to X$ and f is T-Reich mapping, T, f are continuous, T is injective and sub-sequentially convergent mapping, then f has a fixed point in X. Moreover, if (T, f) is a Banach pair then T and f have a unique common fixed point in X.

Proof: Let $x_0 \in X$ be arbitrary, we define a sequence $\{x_n\}$ by $x_{n+1} = f x_n$, for all $n \geq 0$. Now since f is T-Reich mapping hence we have,
\[
d(T f x_n, T f x_{n-1}) \leq ad(T x_n, T x_{n-1}) + bd(T x_n, T f x_n) + cd(T x_n, T f x_{n-1})
\]
\[
d(T x_{n+1}, T x_n) \leq ad(T x_n, T x_{n-1}) + bd(T x_n, T x_{n+1}) + cd(T x_{n-1}, T x_n)
\]
Writing $d_n = d(Tx_{n+1}, Tx_n)$ we have,

$$d_n \leq ad_{n-1} + bd_n + cd_{n-1}$$

$$(1-b)d_n \leq (a + c)d_{n-1}$$

$$d_n \leq \frac{a + c}{1 - b} d_{n-1}$$

$$d_n \leq \lambda d_{n-1}$$

where $\lambda = \frac{a + c}{1 - b} < \frac{a + c}{a + c} < 1$. Hence $\lambda < 1$ and $d_n \leq \lambda^n d_0$, where $d_0 = d(x_1, x_0)$.

Now if $m, n \in \mathbb{N}$ and $m > n$ then we have,

$$d(Tx_n, Tx_m) \leq d(Tx_n, Tx_{n+1}) + d(Tx_{n+1}, Tx_{n+2}) + \cdots + d(Tx_{m-1}, Tx_m)$$

$$d(Tx_n, Tx_m) \leq d_n + d_{n+1} + d_{n+2} + \cdots + d_{m-1}$$

$$d(Tx_n, Tx_m) \leq \lambda^n d_0 + \lambda^{n+1} d_0 + \lambda^{n+2} d_0 + \cdots$$

$$d(Tx_n, Tx_m) \leq \lambda^n d_0 [1 + \lambda + \lambda^2 + \cdots]$$

$$d(Tx_n, Tx_m) \leq \frac{\lambda^n d_0}{1 - \lambda} \to 0 \text{ as } n \to \infty \text{ (since } \lambda < 1).$$

Now using properties (a) of Lemma 2.4, and only the assumption that the underlying cone is solid, we have, for every $e \in P^0$ there is n_0 such that $\frac{\lambda^n d_0}{1 - \lambda} < e$ for all $n > n_0$ and by (a) of Lemma 2.5, we conclude that $\{Tx_n\}$ is a Cauchy sequence. Since X is complete we must have $u \in X$, such that $Tx_n \to u$ as $n \to \infty$.

Now since T is sub-sequentially convergent, therefore the sequence $\{x_n\}$ has a convergent subsequence $\{x_{n_k}\}$ such that $x_{n_k} \to z \in X$, also T is continuous hence $Tx_{n_k} \to Tz$ as $k \to \infty$, and by the uniqueness of limit in tvs-cone metric space we have $Tz = u$.

Now since f is continuous and $x_{n_k} \to z$ so $fx_{n_k} \to fz$ and by continuity of T we have $Tfx_{n_k} \to Tfz$.

Now we show that $Tfz = fz$. Then we have

$$d(Tfz, Tz) \leq d(Tfz, Tfx_{n_k}) + d(Tfx_{n_k}, Tz)$$

$$\leq ad(Tz, Tx_{n_k}) + bd(Tz, Tfz) + cd(Tx_{n_k}, Tfx_{n_k})$$

$$+d(Tfx_{n_k}, Tz)$$

$$= ad(Tz, Tx_{n_k}) + bd(Tz, Tfz) + cd(Tx_{n_k}, Tx_{n_k+1})$$

$$+d(Tx_{n_k+1}, Tz)$$

$$(1-b)d(Tz, Tfz) \leq ad(Tz, Tx_{n_k}) + cd_{n_k} + d(Tx_{n_k+1}, Tz)$$

$$d(Tz, Tfz) \leq \frac{a}{1-b} d(Tz, Tx_{n_k}) + \frac{c}{1-b} d_{n_k} + \frac{1}{1-b} d(Tx_{n_k+1}, Tz)$$

Now since $Tx_{n_k} \to Tz$ and $d_{n_k} \to 0$ as $k \to \infty$, hence for any given $e \in P^0$ we can choose n_1 such that $d(Tz, Tx_{n_k}) \ll \frac{1}{a+e}$, $d_{n_k} \ll \frac{1}{a+e}$ and $d(Tfx_{n_k+1}, Tz) \ll$
1 - b for all $k > n_1$. Hence we have
\[d(Tz, Tfz) \ll \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = e \]
for all $e \in P^0$.
So we have $d(Tz, Tfz) = 0$. Hence $Tfz = Tz$, but T is injective hence $fz = z$
i.e. z is a fixed point of f.

Now we show that z is unique fixed point of f. Let w is another fixed point of
then we have $fw = w$ and
\[
d(Tz, Tw) = d(Tfz, Tfw) \\
\leq ad(Tz, Tw) + bd(Tz, Tfz) + cd(Tw, Tfw) \\
= ad(Tz, Tw) + bd(Tz, Tz) + cd(Tw, Tw) \\
= ad(Tz, Tw)
\]

since $0 \leq a < 1$, hence by proposition 2.2, we must have $d(Tz, Tw) = 0$ i.e. $Tz = Tw$, and T is injective hence $z = w$. Thus fixed point is unique.

Now if (T, f) is a Banach pair, then T and f commutes at the fixed point of
which implies that $fTz = Tfz$ i.e. $Tfz = Tz$. It shows that Tz is another
fixed point of f. Hence by uniqueness of fixed point of f we must have $Tz = z$
i.e. z is also a fixed point of T, and by uniqueness of fixed point of f, it is
unique common fixed point of f and T. □

The following corollary extends the main result of Beiranvand [2] to the
tvs-cone metric space.

Corollary 3.2. (T-contraction) Let (X, d) be a complete tvs-cone metric
space and $T, f : X \to X$ satisfy, $d(Tfx, Tfy) \leq ad(Tx, Ty)$, for all $x, y \in X$
where $0 \leq a < 1$. If the mapping T and f are continuous and T is injective,
sub-sequentially convergent mapping then f has a fixed point in X. Moreover,
if (T, f) is a Banach pair then T and f have a unique common fixed point in
X.

Proof: The proof of corollary follows by taking $b = c = 0$, in theorem 3.1.

Corollary 3.3. (Reich type) Let (X, d) be a complete tvs-cone metric
space and $f : X \to X$ satisfies $d(fx, fy) \leq d(x, y) + bd(x, fx) + cd(y, fy)$, for all
$x, y \in X$, where $a, b, c \geq 0$ with $a + b + c < 1$. If the mapping f is continuous
then f has a unique fixed point in X.

Proof: The proof of this corollary follows by taking $T = I_X$ in theorem 3.1.

Corollary 3.4. (T-Kannan type) Let (X, d) be a complete tvs-cone metric
space and $f : X \to X$ satisfy $d(Tfx, Tfy) \leq b[d(Tx, Tfx) + d(Ty, Tfy)]$, for all $x, y \in X$, where $b \in [0, \frac{1}{2})$. If the mappings T and f are continuous and
T is injective, sub-sequentially convergent mapping then f has a unique fixed
point in X. Moreover if (T, f) is a Banach pair then T and f have a unique
common fixed point in X.

Proof: The proof of this corollary follows by taking $b = c, a = 0$ in theorem 3.1.

Example 3.5. Let $E = (C_{[0,1]}, \mathbb{R}), P = \{\varphi \in E : \varphi \geq 0\}, X = [0, 1]$ and $d : X \times X \to E$ is defined by $d(x, y)(t) = |x - y|e^t$ where $e^t \in E$. Define $T, f : X \to X$ such that $fx = \frac{x}{2}, Tx = \frac{x}{3}$, then $d(Tfx, Tfy) = d(\frac{x}{2}, \frac{x}{3}) = \frac{1}{6}|x - y|e^t \leq \frac{1}{3}|x - y|e^t = d(Tx, Ty)$

Let $a = \frac{1}{3}, b = \frac{1}{6}, c = \frac{1}{5}$, then clearly T is injective, sub-sequentially convergent and (T, f) is a Banach pair, hence all the conditions of theorem 3.1 are satisfied, and $x = 0$ is the required unique common fixed point.

ACKNOWLEDGEMENTS. Authors gratefully acknowledge the support provided by Shri Vaishnav Institute of Technology and Science.

References

Received: August, 2011