Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps

Kazimierz Nikodem

University of Bielsko-Biała
Department of Mathematics
ul. Willowa 2, 43-309 Bielsko-Biała, Poland
email: knikodem@ath.bielsko.pl

José Luis Sánchez

Universidad Central de Venezuela
Escuela de Matemáticas
VE-1020 Caracas, Venezuela
email: jose.sanchez@ciens.ucv.ve

Luisa Sánchez

Universidad de los Andes
Facultad de Ciencias
Mérida, Venezuela
email: lsanchez@ula.ve

Abstract

Counterparts of the classical integral and discrete Jensen inequalities and the Hermite-Hadamard inequalities for strongly convex set-valued maps are presented.

Mathematics Subject Classification: Primary 26A51. Secondary 39B62, 54C60

Keywords: Convex set-valued map, strongly convex set-valued map, Jensen inequality, Hermite-Hadamard inequality
1 Introduction

Let $I \subset \mathbb{R}$ be an interval and c be a positive number. Following Polyak [16] a function $f: I \to \mathbb{R}$ is called strongly convex with modulus c if
\[f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2) - ct(1-t)(x_1 - x_2)^2 \] (1)
for all $x_1, x_2 \in I$ and $t \in [0,1]$. f is called strongly concave with modulus c if $-f$ is strongly convex with modulus c. Many properties and applications of strongly convex functions can be found in the literature (see, for instance, [9], [12], [17], [15], [22]). Recently Huang [5], extended the definition (1) of strongly convex function to set-valued maps. He used such maps to investigate error bounds for some inclusion problems with set constraints. Some further properties of strongly convex set-valued maps can be found in [6]. Strongly concave set-valued maps were investigated in [8].

The aim of this paper is to present counterparts of the integral and discrete Jensen inequalities and the Hermite-Hadamard double inequalities for strongly convex set-valued maps.

2 Preliminaries

Throughout this paper Y be a Banach space, B be a closed unit ball in Y, $I \subset \mathbb{R}$ be an open interval and c be a positive constant.

Denote by $n(Y)$ the family all nonempty subsets of Y and by $cl(Y)$ the family of all closed nonempty subsets of Y. A set-valued map $F: I \to n(Y)$ is called strongly convex with modulus c if
\[tF(x_1) + (1-t)F(x_2) + ct(1-t)(x_1 - x_2)^2B \subset F(tx_1 + (1-t)x_2) \] (2)
for all $x_1, x_2 \in I$ and $t \in [0,1]$ (see [5], [6]). The usual notion of convex set-valued maps corresponds to relation (2) with $c = 0$ (cf. e.g. [2], [3], [11], [20], [21]).

Clearly, the definition of strongly convex set-valued maps is motivated by that of strongly convex functions. The following lemma characterizes strongly convex set-valued maps with values in $cl(\mathbb{R})$ and shows connections between conditions (1) and (2) (cf. [7] where analogous result for convex set-valued maps is given).

Lemma 2.1 A set-valued map $F: I \to cl(\mathbb{R})$ is strongly convex with modulus c if and only if it has one of the following forms:

a) $F(x) = [f_1(x), f_2(x)], \ x \in I$,
b) $F(x) = [f_1(x), +\infty), \ x \in I$,
c) $F(x) = (-\infty, f_2(x)], \ x \in I$,,
Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps

\(F(x) = (-\infty, +\infty), \quad x \in I, \)

where \(f_1 : I \to \mathbb{R} \) is strongly convex with modulus \(c \) and \(f_2 : I \to \mathbb{R} \) is strongly concave with modulus \(c \).

Proof. The “if” part is clear. To prove the “only if” part note first that by (2) the values of \(F \) are convex. Moreover, if \(F(x_0) \) is bounded from above (from below) for some \(x_0 \in I \), then \(F(x) \) is bounded from above (from below) for every \(x \in I \). Define

\[
 f_1(x) = \inf F(x), \quad \text{if } F(x) \text{ is bounded from below}
\]

and

\[
 f_2(x) = \sup F(x), \quad \text{if } F(x) \text{ is bounded from above}.
\]

Then by the strong convexity of \(F \) its follows that \(f_1 \) is strongly convex with modulus \(c \) and \(f_2 \) is strongly concave with modulus \(c \). Since the values of \(F \) are closed and convex, the result follows. \(\square \)

3 The Jensen inequalities

It is well know that if a function \(f : I \to \mathbb{R} \) is convex, then if satisfies the integral Jensen inequalities

\[
f \left(\int_X \varphi(x) d\mu \right) \leq \int_X f(\varphi(x)) d\mu \tag{3}\]

for each probability measure space \((X, \Sigma, \mu)\) and all \(\mu \)-integrable functions \(\varphi : X \to I \).

In [9] the following version of the Jensen inequality for strongly convex functions was proved:

\[
f \left(\int_X \varphi(x) d\mu \right) \leq \int_X f(\varphi(x)) d\mu - c \int_X (\varphi(x) - m)^2 d\mu \tag{4}\]

where \(m = \int_X \varphi(x) d\mu \). A counterpart of (3) for set-valued maps was obtained in [7]. The next Theorem gives a counterpart of (4) for set-valued maps.

Throughout this paper the integral of a set-valued map is understood in the sense of Aumann, i.e. it is the set of integrals of all integrable selections of this map.

Theorem 3.1 Let \((X, \Sigma, \mu)\) be a probability measure space. If \(F : I \to \text{cl}(Y) \) is strongly convex with modulus \(c \), then for each square-integrable function \(\varphi : X \to I \)

\[
\int_X F(\varphi(x)) d\mu + c \int_X (\varphi(x) - m)^2 d\mu \subset F \left(\int_X \varphi(x) d\mu \right), \tag{5}\]

where \(m = \int_X \varphi(x) d\mu \).
Proof. The proof is divided into two steps. First, we assume that $Y = \mathbb{R}$. Then, by Lemma 2.1, F has one of the forms a)- d). Assume that $F(x) = [f_1(x), f_2(x)], x \in I$ (the proof in the remaining cases is similar). Let $h : X \rightarrow \mathbb{R}$ be a μ-integrable selection of $F \circ \varphi$. Then, by the Jensen inequality for strongly convex function (4), we have

$$f_1 \left(\int_X \varphi(x) d\mu \right) \leq \int_X f_1(\varphi(x)) d\mu - c \int_X (\varphi(x) - m)^2 d\mu$$

and

$$f_2 \left(\int_X \varphi(x) d\mu \right) \geq \int_X f_2(\varphi(x)) d\mu + c \int_X (\varphi(x) - m)^2 d\mu$$

Hence

$$\int_X (h(x)) d\mu + c \int_X (\varphi(x) - m)^2 d\mu [-1, 1] \subset F \left(\int_X \varphi(x) d\mu \right).$$

Consequently

$$\int_X F(\varphi(x)) d\mu + c \int_X (\varphi(x) - m)^2 d\mu [-1, 1] \subset F \left(\int_X \varphi(x) d\mu \right),$$

which finishes the proof in the case $Y = \mathbb{R}$.

Now, assume that Y is an arbitrary Banach space. Take a nonzero continuous linear functional $y^* \in Y^*$ and consider the set-valued map $x \mapsto y^*(F(x))$, $x \in I$. This set-valued map is strongly convex with modulus $c||y^*||$ and has closed values in \mathbb{R}. Therefore, by the previous step,

$$\int_X y^*(F(\varphi(x))) d\mu + c||y^*|| \int_X (\varphi(x) - m)^2 d\mu [-1, 1] \subset y^* \left(F \left(\int_X \varphi(x) d\mu \right) \right). \quad (6)$$

Fix a point $b \in B$ and take an arbitrary μ-integrable selection h of $F \circ \varphi$. Then, by (6) and the fact that

$$\int_X y^*(h(x)) d\mu = y^* \left(\int_X h(x) d\mu \right),$$

we get

$$y^* \left(\int_X h(x) d\mu + c \int_X (\varphi(x) - m)^2 d\mu b \right)$$

$$\in \int_X y^*(h(x)) d\mu + c||y^*|| \int_X (\varphi(x) - m)^2 d\mu [-1, 1]$$

$$\subset y^* \left(F \left(\int_X \varphi(x) d\mu \right) \right).$$
Since this condition holds for arbitrary \(y^* \in Y^* \) and the set \(y^*(\int X (\varphi(x)d\mu)) \) is convex closed, by the separation theorem (see [18], Corollary 2.5.11) we obtain
\[
\int_X h(x)d\mu + c \int_X (\varphi(x) - m)^2 d\mu b \in F \left(\int_X \varphi(x)d\mu \right)
\]
Thus
\[
\int_X F(\varphi(x))d\mu + c \int_X (\varphi(x) - m)^2 d\mu B \subset F \left(\int_X \varphi(x)d\mu \right),
\]
which was to be proved. \(\square \)

Now, assume that \(X = I \), \(\varphi(x) = x \) for \(x \in I \), and \(x_1, \ldots, x_n \in I \) are distinct points. Moreover, assume that \(\mu \) is a probability measure concentrate at \(x_1, \ldots, x_n \), that is \(\mu(x_1) = t_1 > 0 \), \(i = 1, \ldots, n \) and \(t_1 + \cdots + t_n = 1 \). Then
\[
m = \int_X \varphi(x)d\mu = \sum_{i=1}^n t_i x_i, \quad \int_X (\varphi(x) - m)^2 d\mu = \sum_{i=1}^n t_i (x_i - m)^2
\]
and
\[
\int_X F(\varphi(x))d\mu = \sum_{i=1}^n t_i F(x_i).
\]

Therefore, as the consequence of Theorem 3.1, we get the following discrete Jensen inequality for strongly convex set-valued maps.

Corollary 3.2 If \(f : I \to \text{cl}(Y) \) is strongly convex with modulus \(c \), then
\[
\sum_{i=1}^n t_i F(x_i) + c \sum_{i=1}^n t_i (x_i - m)^2 B \subset F \left(\sum_{i=1}^n t_i x_i \right)
\]
for all \(n \in \mathbb{N} \), \(x_1, \ldots, x_n \in I \), \(t_1, \ldots, t_n > 0 \) with \(t_1 + \cdots + t_n = 1 \) and \(m = t_1 x_1 + \cdots + t_n x_n \).

4 The Hermite-Hadamard inequality

It is known that if a function \(f : I \to \mathbb{R} \) is convex then it satisfies the Hermite-Hadamard double inequality
\[
f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2}, \quad a, b \in I, \quad a < b.
\]
The following version of the Hermite-Hadamard inequality for strongly convex functions was recently proved in [9]:

\[f \left(\frac{a + b}{2} \right) + \frac{c}{12} (a - b)^2 \leq \frac{1}{b-a} \int_a^b f(x) dx \leq \frac{f(a) + f(b)}{2} - \frac{c}{6} (a - b)^2, \quad (8) \]

for all \(a, b \in I, \ a < b. \)

In this section we present a counterpart of the above inequality (8) for strongly convex set-valued maps. The Hermite-Hadamard inequality for convex set-valued maps was obtained in [19] (cf. also [14], [10]) .

Theorem 4.1 If a set-valued map \(F: I \to \text{cl}(Y) \) is strongly convex with modulus \(c \), then

\[
\frac{1}{b-a} \int_a^b F(x) dx + \frac{c}{12} (a - b)^2 B \subset F \left(\frac{a + b}{2} \right) \quad (9)
\]

and

\[
\frac{F(a) + F(b)}{2} + \frac{c}{6} (a - b)^2 B \subset \frac{1}{b-a} \int_a^b F(x) dx \quad (10)
\]

for all \(a, b \in I, \ a < b. \)

Proof. Condition (9) follows from Theorem 3.1. To show this take \(X = [a, b], \varphi(x) = x, x \in [a, b] \) and \(\mu = \frac{1}{b-a} \lambda \), where \(\lambda \) is the Lebesgue measure on \(\mathbb{R} \). Then

\[
m = \int_X \varphi(x) d\mu = \frac{a + b}{2}, \quad F \left(\int_X \varphi(x) d\mu \right) = F \left(\frac{a + b}{2} \right),
\]

\[
\int_X (\varphi(x) - m)^2 d\mu = \frac{1}{2} (a - b)^2 \quad \text{and} \quad \int_X F(\varphi(x)) d\mu = \frac{1}{b-a} \int_a^b F(x) dx.
\]

Substituting these equalities to (5) we get (9).

To prove condition (10) take arbitrary \(z = \frac{a + b}{2} + \frac{c}{6} (a - b)^2 \beta \), where \(u \in F(a), v \in F(b) \) and \(\beta \in B \). Considerer the function \(f: [a, b] \to Y \) defined by

\[
f(x) = \frac{b-x}{b-a} u + \frac{x-a}{b-a} v + c(b-x)(x-a) \beta.
\]

By the strong convexity of \(F \) we get

\[
f(x) \in \frac{b-x}{x-a} F(a) + \frac{x-a}{b-a} F(b) + c \frac{b-x}{b-a} \frac{x-a}{b-a} (b-a)^2 B \subset F \left(\frac{b-x}{b-a} a + \frac{x-a}{b-a} b \right) = F(x),
\]
which means that f is a selection of F.

Simple calculations gives

$$\int_a^b f(x)dx = (b-a) \left[\frac{u+v}{2} + \frac{1}{6}c\beta(a-b)^2 \right] = (b-a)z.$$

Hence

$$z = \frac{1}{b-a} \int_a^b f(x)dx \in \frac{1}{b-a} \int_a^b F(x)dx,$$

which finishes the proof. \qed

5 The converse of Hermite-Hadamard theorem

It is known that if a continuous function $f : I \to \mathbb{R}$ satisfies the left or the right-hand side inequality in (7), then it is convex (cf. e.g. [2], [4], [13]). An analogous result holds also for strong convexity: If $f : I \to \mathbb{R}$ is continuous and satisfies the left or the right-hand side inequality in (8), then it is strongly convex with modulus c (see [9]). In this section we present a set-valued counterpart of that result. Recall that a set-valued map $F : I \to \mathfrak{n}(Y)$ is said to be continuous at a point x_0 if for every neighbourhood V of zero in Y there exist a neighbourhood U of zero in \mathbb{R} such that

$$F(x) \subset F(x_0) + V \quad \text{and} \quad F(x_0) \subset F(x) + V$$

for all $x \in (x_0 + U) \cap I$.

In what follows we assume that Y is a separable Banach space and denote by $bccl(Y)$ the family of all bounded convex closed and non-empty subsets of Y.

Theorem 5.1 If $F : I \to bccl(Y)$ is continuous and satisfies

$$\frac{1}{b-a} \int_a^b F(x)dx + \frac{c}{12}(a-b)^2B \subset F\left(\frac{a+b}{2}\right), \quad a, b \in I, \quad a < b. \quad (11)$$

or

$$\frac{F(a) + F(b)}{2} + \frac{c}{6}(a-b)^2B \subset \frac{1}{b-a} \int_a^b F(x)dx, \quad a, b \in I, \quad a < b, \quad (12)$$

then F is strongly convex with modulus c.
Proof. Assume that F satisfies (11) (if F satisfies (12) the proof is analogous). Define $G(x) = F(x) + cx^2 B$, $x \in I$. Then

\[
\frac{1}{b-a} \int_{a}^{b} G(x) \, dx = \frac{1}{b-a} \int_{a}^{b} F(x) \, dx + \frac{1}{b-a} \int_{a}^{b} cx^2 B \, dx \\
= \frac{1}{b-a} \int_{a}^{b} F(x) \, dx + c \left(\frac{a^2 + ab + b^2}{3} \right) B \\
= \frac{1}{b-a} \int_{a}^{b} F(x) \, dx + c \left(\frac{(a-b)^2}{12} B + c \left(\frac{a+b}{2} \right)^2 B \right) \\
\subset F\left(\frac{a+b}{2} \right) + c \left(\frac{a+b}{2} \right)^2 B = G\left(\frac{a+b}{2} \right).
\]

Thus G satisfies the Hermite-Hadamard-type inclusion and it is also continuous. Therefore, by [10, Theorem 8], G is convex. Hence, using the definition of G and the characterization of strongly convex set-valued maps given in [6], we obtain that F is strongly convex with modulus c. This finished the proof.

\[\square\]

References

Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps

Received: November, 2014